Name: _____

1. If p(t) = -2(t-3)(t+2) is quadratic, then it can be written as $p(t) = \underline{\hspace{1cm}} t^2 + \underline{\hspace{1cm}} t + \underline{\hspace{1cm$

$$-2(4-3)(4+2)$$

$$-2(4^{2}-4-6)$$

$$-24^{2}+24+12$$

- 2. The height of a baseball in feet t seconds after it has been hit is given by $y = 2 + 35t 16t^2$.
 - a) What is the height of the ball 0.2 seconds after it was hit?
 - b) When does the ball hit the ground? (If necessary, round your answer to three decimal places)

- 3. Let f(x) be a quadratic function which has y-intercept 30 and has zeros at x = -2 and x = -2
 - 5. Then $f(x) = 3x^2 + 9x + 30$. (Solve algebraically.)

$$y = a(x+z)(x-5)$$

$$y = -3(x+2)(x-5)$$

$$30 = a(0+2)(0-5)$$

$$30 = -10a$$

$$-3 = a$$

$$= -3x^2 + 9x + 30$$

4. Find a formula for the quadratic function which has only one zero at x = 3 and contains the point (2,-3)

$$y = a(x-3)^{2}$$

$$-3 = a(z-3)^{2}$$

$$-3 = a(-1)^{2}$$

$$-3 = a$$

$$y = -3(x-3)^{2}$$

5. Graph the function: $f(x) = \begin{cases} -4, & -2 \le x < 1 \\ x+1, & 1 \le x \le 3 \\ x-3, & 3 < x < 4 \end{cases}$

6. Find a formula for the quadratic function whose graph has axis of symmetry x = 4.5, y = 4.5, and contains the point (3, -47).

$$y = a(x-4.5)^{2} + K$$

$$7 = a(-4.5)^{2} + K - 47 = a(3-4.5)^{2} + K$$

$$7 = 20.25a + K - 47 = a(-1.5)^{2} + K$$

$$7 - 20.25a - K - 47 = 2.25a + K$$

$$-47 - 2.25a - K$$

7-20.25a = -47-2.25a

$$54 = 18a$$

 $3 = a$
 $K = -47-2.25(3)$
 $K = -47-6.75$
 $K = -53.75$
 $Y = 3(x-4.5)^2 - 53.75$

7. Which of the following parabolas have a vertex of (6, -6)?

(A)
$$y = -3(x-6)^2 - 6$$

B)
$$y = 4(x+6)^2 + 6$$

C)
$$y = -8(x+6)^2 - 6$$

$$(D) y = 6x^2 - 72x + 210$$

E)
$$y = 4x^2 + 48x + 150$$

D.)
$$6(x^2-12x) + 210$$

 $6(x-12x+36) + 210-216$
 $y=6(x-6)^2-6$

$$4(x^{2}+12x)+150$$

$$4(x^{2}+12x+36)+150-144$$

$$4(x+6)^{2}+6$$

8. The formula for the following parabola is $f(x) = a(x-h)^2 + k$, where $a = \frac{1}{2}$, $h = \frac{1}{2}$ 3_, and k = 4.5_.

Note: Figure is not necessarily drawn to scale.

9. What is the equation of the parabola that is concave down, has vertex (-1,5) and contains the origin.

the parabola that is concave down, has vertex
$$(-1,5)a$$

$$y = a(x+1)^{2} + 5$$

$$0 = a(0+1)^{2} + 5$$

$$0 = |a| + 5$$

$$-5 = a$$

10. Find the vertex and azis of symmetry algebraically for the function $r(t) = 5t^2 - 50t + 130$.

the vertex and azis of symmetry algebraically for the function
$$r(t)$$

$$5\left(t^{2}-\mu t\right) + 130$$

$$5\left(t^{2}-\mu t\right) + 130-125 \qquad Ventex: (5,5)$$

$$5\left(t^{2}-\mu t\right)^{2}+5 \qquad Aos: X=5$$

11. The following figure gives the graph of y = f(x), a quadratic function with vertex (2, 1). The formula for f(x) is $y = a(x-b)^2 + c$, where $a = \frac{1}{2}$, $b = \frac{2}{2}$, and $c = \frac{1}{2}$.

$$y = a(x-z)^{2} + 1$$

$$3 = a(4-z)^{2} + 1$$

$$3 = 4a + 1$$

$$2 = 4a$$

$$\frac{1}{2} = a$$

$$y = \frac{1}{2}(x-2)^{2} + 1$$

12. Suppose that f(x) is linear with an x-intercept of 2 and a y-intercept of 3. If f(x) = b + mx, then b = 3 and m = -3.

$$y = -\frac{3}{2} \times +3$$
 $M = \frac{3-0}{0-2}$
 $M = -\frac{3}{2}$
 $M = -\frac{3}{2}$

- 13. If f(5) > f(6.2), then the function must be a decreasing function.
 - A) True
 - B) False

True if linear, but not if a parabola

